Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 186(23): 4985-4991, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949054

RESUMO

Mexican, Puerto Rican, and Central American Ancestry (MPRCA) individuals represent 82% of US Latinos. An intergenerational group of MPRCA women and allies met to discuss persistent underrepresentation of MPRCA women in STEM, identifying multi-level challenges and solutions. Implementation of these solutions is important and will benefit MPRCA women and the entire academic community.


Assuntos
Hispânico ou Latino , Ciência , Feminino , Humanos , Estados Unidos , Ciência/educação
2.
J Nutr Biochem ; 109: 109102, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817244

RESUMO

Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is a novel coronavirus that infects many types of cells and causes cytokine storms, excessive inflammation, acute respiratory distress to induce failure of respiratory system and other critical organs. In this study, our results showed that trimethylamine-N-oxide (TMAO), a metabolite generated by gut microbiota, acts as a regulatory mediator to enhance the inerleukin-6 (IL-6) cytokine production and the infection of human endothelial progenitor cells (hEPCs) by SARS-CoV-2. Treatment of N-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) could effectively block the entry of SARS-CoV-2 in hEPCs. The anti-infection effects of N-3 PUFAs were associated with the inactivation of NF-κB signaling pathway, a decreased expression of the entry receptor angiotensin-converting enzyme 2 (ACE2) and downstream transmembrane serine protease 2 in hEPCs upon the stimulation of TMAO. Treatment of DHA and EPA further effectively inhibited TMAO-mediated expression of IL-6 protein, probably through an inactivation of MAPK/p38/JNK signaling cascades and a downregulation of microRNA (miR)-221 in hEPCs. In conclusion, N-3 PUFAs such as DHA and EPA could effectively act as preventive agents to block the infection of SARS-CoV-2 and IL-6 cytokine production in hEPCs upon the stimulation of TMAO.


Assuntos
COVID-19 , Células Progenitoras Endoteliais , Ácidos Graxos Ômega-3 , MicroRNAs , Enzima de Conversão de Angiotensina 2 , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células Progenitoras Endoteliais/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Humanos , Interleucina-6 , Metilaminas , NF-kappa B , Óxidos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Serina Endopeptidases
4.
Biotechnol Bioeng ; 115(5): 1301-1310, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411865

RESUMO

Recombinant butyrylcholinesterase produced in a metabolically regulated transgenic rice cell culture (rrBChE) was purified to produce a highly pure (95%), active form of enzyme. The developed downstream process uses common manufacturing friendly operations including tangential flow filtration, anion-exchange chromatography, and affinity chromatography to obtain a process recovery of 42% active rrBChE. The purified rrBChE was then characterized to confirm its comparability to the native human form of the molecule (hBChE). The recombinant and native enzyme demonstrated comparable enzymatic behavior and had an identical amino acid sequence. However, rrBChE differs in that it contains plant-type complex N-glycans, including an α-1,3 linked core fucose, and a ß-1,2 xylose, and lacking a terminal sialic acid. Despite this difference, rrBChE is demonstrated to be an effective stoichiometric bioscavenger for five different organophosphorous nerve agents in vitro. Together, the efficient downstream processing scheme and functionality of rrBChE confirm its promise as a cost-effective alternative to hBChE for prophylactic and therapeutic use.


Assuntos
Butirilcolinesterase/isolamento & purificação , Butirilcolinesterase/metabolismo , Oryza/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Butirilcolinesterase/química , Cromatografia Líquida , Filtração , Glicosilação , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
Cell Transplant ; 26(10): 1636-1647, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29251114

RESUMO

Studies suggest that a low level of circulating human endothelial progenitor cells (EPCs) is a risk factor for ischemic injury and coronary artery disease (CAD). Consumption of S-allylcysteine (SAC) is known to prevent CAD. However, the protective effects of SAC on the ischemic injury are not yet clear. In this study, we examined whether SAC could improve blood flow recovery in ischemic tissues through EPC-mediated neovasculogenesis. The results demonstrate that SAC significantly enhances the neovasculogenesis of EPCs in vitro. The molecular mechanisms for SAC enhancement of neovasculogenesis include the activation of Akt/endothelial nitric oxide synthase signaling cascades. SAC increased the expression of c-kit, ß-catenin, cyclin D1, and Cyclin-dependent kinase 4 (CDK4) proteins in EPCs. Daily intake of SAC at dosages of 0.2 and 2 mg/kg body weight significantly enhanced c-kit protein levels in vivo. We conclude that dietary consumption of SAC improves blood flow recovery and prevents ischemic injury by inducing neovasculogenesis in experimental models.


Assuntos
Cisteína/análogos & derivados , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Proliferação de Células , Cisteína/metabolismo , Feminino , Humanos , Camundongos , Transdução de Sinais
7.
J Nutr Biochem ; 42: 172-181, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28189115

RESUMO

Hyperglycemia is associated with a reduced number of endothelial progenitor cells (EPCs) that impairs vascular function. Circulating EPCs play important roles in postnatal neovasculogenesis and the prevention of ischemic injury. Frequent consumption of fish oil (FO) that is abundant with eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) is reportedly associated with an alleviation of diabetic complications and a lowered incidence of cardiovascular disease. The aim of this study was to examine whether N-3 polyunsaturated fatty acids such as EPA and DHA would reverse the high glucose-mediated dysfunction of EPCs in vitro and thereby prevent the ischemic injury that occurs under the hyperglycemic conditions in Type 2 diabetes (T2D) db-/- mice. The results demonstrate that EPA and DHA alleviate high glucose-mediated impairment of tubular formation in EPCs through a rescue of neovasculogenic capability. The molecular mechanisms underlying the effects of EPA and DHA include the activation of the extracellular signal-regulated kinase 1/2, Akt/endothelial nitric oxide synthase (eNOS) and AMP-activated kinase (AMPK) signaling cascades as well as the phosphorylation of the downstream FOXO3a protein in EPCs. Moreover, EPA and DHA up-regulate the expression of c-kit, erythroid 2-related factor and heme oxygenase-1 proteins. Daily consumption of FO at dosages of 4% and 6% (wt/wt) significantly increased the level of bone marrow-derived and circulating EPCs, induced a recovery of blood flow and prevented ischemic injuries in a T2D db-/- mouse model. The effects of FO consumption were exerted the activation of Akt/eNOS and AMPK signaling cascades without any effect on the plasma VEGF level in vivo.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Glucose/efeitos adversos , Isquemia/prevenção & controle , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/dietoterapia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células Progenitoras Endoteliais/patologia , Feminino , Óleos de Peixe/farmacologia , Camundongos Mutantes , Neovascularização Patológica/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Int J Mol Sci ; 18(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054967

RESUMO

Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 (CMG2) protein fused via a linker to the fragment crystallizable (Fc) domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus (CaMV) 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N-glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N-glycans consists of complex type structures in both protein samples. The most abundant (>50%) N-glycan structure was GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N-glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting.


Assuntos
Imunoglobulina G/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Receptores de Peptídeos/genética , Sequência de Aminoácidos , Antraz/metabolismo , Antraz/microbiologia , Bacillus anthracis/metabolismo , Biotecnologia , Caulimovirus/genética , Clonagem Molecular , Descoberta de Drogas , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Regiões Promotoras Genéticas , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
NPJ Sci Food ; 1: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31304244

RESUMO

The processes that define mammalian physiology evolved millions of years ago in response to ancient signaling molecules, most of which were acquired by ingestion and digestion. In this way, evolution inextricably linked diet to all major physiological systems including the nervous system. The importance of diet in neurological development is well documented, although the mechanisms by which diet-derived signaling molecules (DSMs) affect cognition are poorly understood. Studies on the positive impact of nutritive and non-nutritive bioactive molecules on brain function are encouraging but lack the statistical power needed to demonstrate strong positive associations. Establishing associations between DSMs and cognitive functions like mood, memory and learning are made even more difficult by the lack of robust phenotypic markers that can be used to accurately and reproducibly measure the effects of DSMs. Lastly, it is now apparent that processes like neurogenesis and neuroplasticity are embedded within layers of interlocked signaling pathways and gene regulatory networks. Within these interdependent pathways and networks, the various transducers of DSMs are used combinatorially to produce those emergent adaptive gene expression responses needed for stimulus-induced neurogenesis and neuroplasticity. Taken together, it appears that cognition is encoded genomically and modified by epigenetics and epitranscriptomics to produce complex transcriptional programs that are exquisitely sensitive to signaling molecules from the environment. Models for how DSMs mediate the interplay between the environment and various neuronal processes are discussed in the context of the food-brain axis.

10.
Mol Cancer Ther ; 16(3): 480-493, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27956520

RESUMO

The treatment of breast cancer cells obtained by blocking the aberrant activation of the proliferation signaling pathways PI3K/Akt/mTOR and MEK/ERK has received considerable attention in recent years. Previous studies showed that Taiwanin A inhibited the proliferation of several types of cancer cells. In this study, we report that 3,4-bis-3,4,5-trimethoxybenzylidene-dihydrofuran (BTMB), a novel derivative of Taiwanin A, significantly inhibited the proliferation of triple-negative breast cancer (TNBC) cells both in vitro and in vivo The results show that BTMB inhibited the proliferation of human TNBC cells by the induction of cell-cycle arrest and apoptosis in a dose-dependent fashion. BTMB inhibited the expression of ß-catenin, cdc2 and the cell-cycle regulatory proteins, cyclin A, cyclin D1, and cyclin E. The mechanism of action was associated with the suppression of cell survival signaling through inactivation of the Akt and ERK1/2 signaling pathways. Moreover, BTMB induced cell apoptosis through an increase in the expression of BAX, cleaved caspase-3, and cleaved PARP. Moreover, BTMB inhibited TNBC cell colony formation and sensitized TNBC cells to cisplatin, a chemotherapeutic drug. In a TNBC mouse xenograft model, BTMB significantly inhibited the growth of mammary carcinomas through decreased expression of cyclin D1. BTMB was shown to significantly suppress the growth of mammary carcinoma and therefore to have potential as an anticancer therapeutic agent. Mol Cancer Ther; 16(3); 480-93. ©2016 AACR.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Furanos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/química , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Plant Sci ; 7: 743, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379103

RESUMO

To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed.

12.
Front Plant Sci ; 7: 412, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066048

RESUMO

An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE.

13.
PLoS One ; 9(6): e99631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960186

RESUMO

BACKGROUND: The aberrant regulation of phosphatidylinositide 3-kinases (PI3-K)/Akt, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (m-TOR) signaling pathways in cancer has prompted significant interest in the suppression of these pathways to treat cancer. Caffeic acid (CA) has been reported to possess important anti-inflammatory actions. However, the molecular mechanisms by which CA derivatives including caffeic acid phenethyl ester (CAPE) and caffeic acid phenylpropyl ester (CAPPE), exert inhibitory effects on the proliferation of human colorectal cancer (CRC) cells have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: CAPE and CAPPE were evaluated for their ability to modulate these signaling pathways and suppress the proliferation of CRC cells both in vitro and in vivo. Anti-cancer effects of these CA derivatives were measured by using proliferation assays, cell cycle analysis, western blotting assay, reporter gene assay and immunohistochemical (IHC) staining assays both in vitro and in vivo. This study demonstrates that CAPE and CAPPE exhibit a dose-dependent inhibition of proliferation and survival of CRC cells through the induction of G0/G1 cell cycle arrest and augmentation of apoptotic pathways. Consumption of CAPE and CAPPE significantly inhibited the growth of colorectal tumors in a mouse xenograft model. The mechanisms of action included a modulation of PI3-K/Akt, AMPK and m-TOR signaling cascades both in vitro and in vivo. In conclusion, the results demonstrate novel anti-cancer mechanisms of CA derivatives against the growth of human CRC cells. CONCLUSIONS: CA derivatives are potent anti-cancer agents that augment AMPK activation and promote apoptosis in human CRC cells. The structure of CA derivatives can be used for the rational design of novel inhibitors that target human CRC cells.


Assuntos
Antineoplásicos/farmacologia , Ácidos Cafeicos/farmacologia , Neoplasias do Colo/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia
14.
J Nutr Biochem ; 25(9): 934-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24927915

RESUMO

Human endothelial progenitor cells (hEPCs) derived from bone marrow play a crucial in the prevention of ischemic injuries in the course of postnatal neovasculogenesis. Frequent fish oil (FO) consumption is reportedly associated with a significantly lower incidence of cardiovascular disease. However, the molecular mechanisms of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) are not well elucidated, and the beneficial effect of FO consumption on neovasculogenesis has not been demonstrated yet. In the current study, we investigated the effects of EPA/DHA and FO consumption on neovasculogenesis by using vascular tube formation assay, Western blotting, real-time polymerase chain reaction, immunohistochemical staining and Doppler imaging in both in vitro and in vivo models. The results demonstrate that EPA and DHA dose-dependently enhance the neovasculogenesis and cell migration of hEPCs in vitro. The mechanisms of action included up-regulation of the c-kit protein as well as the phosphorylation of the ERK1/2, Akt and endothelial nitric oxide synthase signaling molecules in hEPCs. Furthermore, EPA significantly suppressed the expression of microRNA 221 in vitro. In experimental animal models, FO consumption significantly induced the formation of new blood vessels (neovasculogenesis) and prevented ischemia. Taken together, it is suggested that FO consumption enhances neovasculogenesis mainly through the effects of EPA in hEPCs, thereby exerting a preventive effect against ischemic injury.


Assuntos
Ácido Eicosapentaenoico/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Células Cultivadas , Células Progenitoras Endoteliais/enzimologia , Células Progenitoras Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Nus , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
15.
J Nutr Biochem ; 23(6): 616-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21775114

RESUMO

Our previous study with docosahexaenoic acid (DHA) supplementation to hypertriglyceridemic men showed that DHA reduced several risk factors for cardiovascular disease, including the plasma concentration of inflammatory markers. To determine the effect of DHA supplementation on the global gene expression pattern, we performed Affymetrix GeneChip microarray analysis of blood cells [treated with lipopolysaccharide (LPS) or vehicle] drawn before and after the supplementation of DHA from the hypertriglyceridemic men who participated in that study. Genes that were significantly differentially regulated by the LPS treatment and DHA supplementation were identified. Differential regulation of 18 genes was then verified by quantitative real-time polymerase chain reaction (qRT-PCR). Both microarray and qRT-PCR data showed that DHA supplementation significantly suppressed the expression of low-density lipoprotein (LDL) receptor and cathepsin L1, both of which were also up-regulated by LPS. DHA supplementation also suppressed oxidized LDL (lectin-like) receptor 1 (OLR1). However, LPS did not induce OLR1 mRNA expression. Enrichment with Gene Ontology categories demonstrated that the genes related to transcription factor activity, immunity, host defense and inflammatory responses were inversely regulated by LPS and DHA. These results provide supporting evidence for the anti-inflammatory effects of DHA supplementation, and reveal previously unrecognized genes that are regulated by DHA and are associated with risk factors of cardiovascular diseases.


Assuntos
Catepsina L/genética , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Hipertrigliceridemia/tratamento farmacológico , Receptores de LDL/genética , Receptores Depuradores Classe E/genética , Anti-Inflamatórios/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Humanos , Hipertrigliceridemia/sangue , Inflamação/sangue , Inflamação/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ensaios Clínicos Controlados Aleatórios como Assunto , Reação em Cadeia da Polimerase em Tempo Real , Receptores de LDL/antagonistas & inibidores , Receptores de LDL/metabolismo , Receptores Depuradores Classe E/antagonistas & inibidores , Receptores Depuradores Classe E/metabolismo , Regulação para Cima
16.
Nutr Cancer ; 63(4): 623-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21526452

RESUMO

The chemopreventive properties of the chromatin-binding soy peptide, lunasin, are well documented, but its mechanism of action is unclear. To elucidate the mechanism by which lunasin reduces tumor foci formation in cultured mammalian cells, nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells were treated with lunasin followed by gene expression profiling and characterization of the chromatin acetylation status for certain chemopreventive genes. The genes HIF1A, PRKAR1A, TOB1, and THBS1 were upregulated by lunasin in RWPE-1 but not in RWPE-2 cells. Using histone acetyltransferase (HAT) assays with acid-extracted histones as templates, we showed that lunasin specifically inhibited H4K8 acetylation while enhanced H4K16 acetylation catalyzed by HAT enzymes p300, PCAF, and HAT1A. These results suggest a novel mechanism for lunasin-dependent upregulation of gene expression. Chromatin immunoprecipitation (ChIP) revealed hypoacetylation of H4K16 in RWPE-2 cells, specifically at the 5' end of THBS1 containing a CpG island. Moreover, bisulfite PCR (BSP) and subsequent DNA sequencing indicated that this CpG island was hypomethylated in RWPE-1 but hypermethylated in RWPE-2 cells. Histone hypoacetylation and DNA hypermethylation in the 5' region of THBS1 may explain the inability of lunasin to upregulate this gene in RWPE-2 cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Proteínas de Soja/farmacologia , Trombospondinas/metabolismo , Animais , Quimioprevenção , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Ilhas de CpG/efeitos dos fármacos , Metilação de DNA , Epigenômica , Histonas/metabolismo , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Próstata/citologia , Próstata/patologia , Análise de Sequência de DNA , Trombospondinas/genética , Células Tumorais Cultivadas , Regulação para Cima
17.
J Med Food ; 14(3): 181-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21332396

RESUMO

Vitamin C is a strong antioxidant that alters gene expression in cells, and its effects can be modified by cellular oxidative stress. We investigated the genome-wide effects of vitamin C on the in vivo transcriptome in the liver, which synthesizes various enzymes and proteins to defend against cellular oxidative stress. We fed mice vitamin C (0.056 mg/g of body weight) for 1 week and performed DNA microarray analysis with hepatic mRNA in fasting and refeeding states to mimic physiological conditions of oxidative stress. Significance analysis of microarray data identified approximately 6,000 genes differentially expressed in both fasting and refeeding states. In the fasting state, vitamin C induced overall energy metabolism as well as radical scavenging pathways. These were ameliorated in the refeeding state. These findings suggest that vitamin C has profound and immediate global effects on hepatic gene expression, which may help prevent oxidative stress, and that long-term treatment with vitamin C might reduce the risk of chronic disease.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Jejum , Perfilação da Expressão Gênica/métodos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Estresse Oxidativo/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Nutr Cancer ; 60(3): 301-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18444164

RESUMO

Multiple studies of the impact of lifestyle factors on the development of prostate cancer have yielded inconsistent results. This may be due to unrecognized heterogeneity of the study populations, specifically genetic polymorphisms, which directly affect lifestyle interventions. We review some known polymorphisms and mechanisms of action as related to dietary and other lifestyle interventions and prostate cancer carcinogenesis. Further identification of genes affected by dietary/environmental changes will enable knowledgeable lifestyle interventions on an individual basis.


Assuntos
Dieta , Polimorfismo Genético , Neoplasias da Próstata/genética , Comportamento Alimentar , Humanos , Estilo de Vida , Masculino , Fenômenos Fisiológicos da Nutrição/fisiologia , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/prevenção & controle
19.
Br J Nutr ; 94(5): 623-32, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16277761

RESUMO

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.


Assuntos
Genômica , Fenômenos Fisiológicos da Nutrição/fisiologia , Animais , Modelos Animais de Doenças , Ingestão de Alimentos , Meio Ambiente , Variação Genética/genética , Genoma Humano , Humanos , Cooperação Internacional , Fenótipo , Pesquisa
20.
BMC Bioinformatics ; 6: 195, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16076401

RESUMO

BACKGROUND: Life processes are determined by the organism's genetic profile and multiple environmental variables. However the interaction between these factors is inherently non-linear. Microarray data is one representation of the nonlinear interactions among genes and genes and environmental factors. Still most microarray studies use linear methods for the interpretation of nonlinear data. In this study, we apply Isomap, a nonlinear method of dimensionality reduction, to analyze three independent large Affymetrix high-density oligonucleotide microarray data sets. RESULTS: Isomap discovered low-dimensional structures embedded in the Affymetrix microarray data sets. These structures correspond to and help to interpret biological phenomena present in the data. This analysis provides examples of temporal, spatial, and functional processes revealed by the Isomap algorithm. In a spinal cord injury data set, Isomap discovers the three main modalities of the experiment--location and severity of the injury and the time elapsed after the injury. In a multiple tissue data set, Isomap discovers a low-dimensional structure that corresponds to anatomical locations of the source tissues. This model is capable of describing low- and high-resolution differences in the same model, such as kidney-vs.-brain and differences between the nuclei of the amygdala, respectively. In a high-throughput drug screening data set, Isomap discovers the monocytic and granulocytic differentiation of myeloid cells and maps several chemical compounds on the two-dimensional model. CONCLUSION: Visualization of Isomap models provides useful tools for exploratory analysis of microarray data sets. In most instances, Isomap models explain more of the variance present in the microarray data than PCA or MDS. Finally, Isomap is a promising new algorithm for class discovery and class prediction in high-density oligonucleotide data sets.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Dinâmica não Linear , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Viés , Morte Celular/genética , Análise por Conglomerados , Apresentação de Dados , Avaliação Pré-Clínica de Medicamentos , Células HL-60/efeitos dos fármacos , Humanos , Modelos Genéticos , Neurônios/patologia , Ratos , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA